4.- ¿DONDE ESTA EL FOTON?

Cuando tenemos en cuenta las fuerzas que actúan en la naturaleza, lo único que conseguimos es complicar las cosas aún más. El mundo que nos rodea está lleno de medios de ejercer influencia: las pelotas se pueden golpear mediante raquetas o palas, los aficionados al bungee se pueden lanzar hacia el suelo desde elevadas plataformas, los imanes pueden mantener a los trenes de alta velocidad sobre carriles metálicos, los contadores Geiger pueden sonar como respuesta a la presencia de material radiactivo, las bombas termonucleares pueden explotar. Se puede actuar sobre los objetos empujándolos, tirando de ellos o agitándolos vigorosamente; también lanzando o disparando otros objetos contra ellos; estirándolos, retorciéndolos o aplastándolos; congelándolos, calentándolos o quemándolos. Durante los últimos cien años, los físicos han acumulado un número de pruebas cada vez mayor de que todas estas interacciones entre objetos o materiales distintos, así como cualquiera de las interacciones que por millones y millones se observan a diario, se pueden reducir a combinaciones de cuatro fuerzas fundamentales. Una de éstas es la fuerza de la gravedad. Las otras tres son la fuerza electromagnética, la fuerza nuclear débil y la fuerza nuclear fuerte.
La fuerza de la gravedad es, de las tres, la que nos resulta más familiar. Es la responsable de que nos mantengamos en órbita alrededor del Sol, y también de que nuestros pies permanezcan firmemente plantados sobre el suelo. La masa de un objeto determina la medida de cuánta fuerza de la gravedad puede ejercer o soportar dicho objeto. A continuación, la más familiar para nosotros es la fuerza electromagnética. Es la fuerza que hace funcionar todas las comodidades de la vida moderna -iluminación, ordenadores, televisores, teléfonos- y subyace al poder terrorífico de las tormentas con aparato eléctrico y al suave tacto de una mano humana. Microscópicamente, la carga eléctrica de una partícula desempeña la misma función en relación con la fuerza electromagnética que la que desempeña la masa en relación con la gravedad: determina la fuerza electromagnética que puede ejercer una partícula o la fuerza con que puede responder electromagnéticamente esa partícula.
Las fuerzas denominadas, respectivamente, nuclear fuerte y nuclear débil nos resultan menos familiares, porque su magnitud disminuye rápidamente a escalas de distancias casi subatómicas; son las fuerzas nucleares. Ésta es también la razón por la que se descubrieron mucho más recientemente que las otras dos fuerzas. La fuerza nuclear fuerte es la responsable de que los quarks se mantengan «pegados» unos a otros dentro de los protones y los neutrones, y de que los propios protones y neutrones estén estrechamente apiñados dentro del núcleo del átomo. La fuerza nuclear débil se conoce sobre todo como la fuerza responsable de la desintegración radiactiva de sustancias como el uranio y el cobalto.
Durante el último siglo, los físicos han descubierto dos características comunes a todas estas fuerzas. En primer lugar, como veremos en el capítulo 5, a nivel microscópico todas las fuerzas tienen asociada una partícula que se puede considerar como el mínimo paquete o haz que puede formar la fuerza. Si se dispara un haz de rayos láser -una «escopeta de rayos electromagnéticos»- se está disparando un chorro de fotones que es el haz mínimo de fuerza electromagnética. De manera similar, los constituyentes más pequeños de los campos de la fuerza nuclear débil y de la fuerza nuclear fuerte son partículas llamadas bosones gauge* asociados a la fuerza nuclear débil y gluones. (El nombre gluón es especialmente descriptivo: se puede pensar en los gluones considerándolos como el componente microscópico del fuerte pegamento (glue) que mantiene unidos los elementos de los núcleos de los átomos.) En 1984, los físicos que realizaban experimentos al respecto, ya habían establecido definitivamente la existencia y las propiedades detalladas de estos tres tipos de partículas de fuerza, reseñadas en la Tabla 1.2. Los físicos creen que la fuerza de la gravedad también tiene una partícula asociada -el gravitón- pero su existencia está aún pendiente de confirmarse experimentalmente.
La segunda característica común a estas fuerzas es que, del mismo modo que la masa determina cómo afecta la gravedad a una partícula, y su carga eléctrica determina cómo le afecta la fuerza electromagnética, las partículas están provistas de ciertas cantidades de «carga fuerte» y «carga débil» que determinan cómo se verán afectadas dichas partículas por la fuerza nuclear fuerte y la fuerza nuclear débil. (Estas propiedades se detallan en la tabla que aparece en las notas finales correspondientes a este capítulo 1) Sin embargo, al igual que sucede con las masas de las partículas, más allá del hecho de que los físicos experimentales han medido minuciosamente estas propiedades, nadie tiene una explicación de por qué nuestro universo está compuesto precisamente por esas partículas, con esas masas y cargas de fuerza tan peculiares.
A pesar de sus características comunes, el examen de las propias fuerzas fundamentales sólo sirve para plantear preguntas. Por ejemplo, ¿por qué son cuatro las fuerzas fundamentales? ¿Por qué no cinco, o tres, ó quizá sólo una? ¿Por qué tienen estas fuerzas unas propiedades diferentes? ¿Por qué las fuerzas llamadas nuclear fuerte y nuclear débil se limitan a operar a escalas microscópicas, mientras que la fuerza de la gravedad y la electromagnética tienen un alcance ilimitado en su influencia? Y, ¿por qué existe una gama enorme en cuanto a la intensidad intrínseca de estas fuerzas?
Para valorar la última pregunta, imaginemos que sostenemos un electrón con la mano izquierda y otro en la derecha, y que aproximamos estas dos partículas de idéntica carga eléctrica intentando juntarlas. Su atracción gravitatoria mutua favorecerá que se acerquen, mientras que su fuerza de repulsión electromagnética intentará separarlas. ¿Cuál de estas dos fuerzas es más intensa? No hay discusión posible: la repulsión electromagnética es un millón de billones de billones de billones (1042) de veces más fuerte. Si el bíceps derecho representa la intensidad de la fuerza de la gravedad, entonces el bíceps izquierdo tendría que ser tan grande que sobrepasara los límites del universo conocido para poder representar la intensidad de la fuerza electromagnética. La única razón por la que la fuerza electromagnética no aplasta completamente a la fuerza de la gravedad en el mundo que nos rodea es que la mayoría de las cosas están compuestas por una cantidad igual de cargas eléctricas positivas y negativas cuyas fuerzas se cancelan mutuamente. Por otra parte, ya que la gravedad siempre es una fuerza de atracción, no existen cancelaciones análogas -más materia significa una fuerza de la gravedad mayor-. Sin embargo, hablando de partículas fundamentales, se puede afirmar que la fuerza de la gravedad es en este contexto una fuerza extremadamente débil. (Un hecho que explica la dificultad para confirmar experimentalmente la existencia del gravitón. Buscar el haz más pequeño de la fuerza más débil es todo un desafío.) También hay experimentos que han demostrado que la fuerza nuclear fuerte es alrededor de cien veces más fuerte que la fuerza electromagnética y cerca de cien mil veces más fuerte que la fuerza nuclear débil. Pero ¿dónde está el porqué -la razón de ser- de que nuestro universo tenga estas características?
Ésta no es una pregunta ligada a una actitud de filosofar inútilmente sobre cuál sería la causa de que ciertos detalles resulten ser de un modo en vez de ser de otro; el universo sería un lugar sumamente diferente si las propiedades de la materia y de las partículas de fuerza sufrieran algún cambio, aunque éste fuera muy moderado. Por ejemplo, la existencia de núcleos estables que forman los alrededor de cien elementos de la tabla periódica depende directamente de la proporción entre las magnitudes de la fuerza nuclear fuerte y la fuerza electromagnética. Los protones que se apiñan juntos en los núcleos de los átomos se repelen todos ellos electromagnéticamente entre sí; la fuerza nuclear fuerte que actúa entre los quarks de que están formados, afortunadamente, logra vencer esta repulsión y ata los protones firmemente. Sin embargo, cualquier pequeño cambio en las intensidades relativas de estas dos fuerzas perturbaría fácilmente el equilibrio existente entre ellas y haría que se desintegraran la mayoría de los núcleos atómicos. Aún más, si la masa del electrón fuera unas pocas veces mayor de lo que es, los electrones y los protones tenderían a combinarse para formar neutrones, engullendo los núcleos de hidrógeno (el elemento más sencillo del cosmos, ya que su núcleo contiene un único protón) e impidiendo la producción de elementos más complejos. La existencia de las estrellas se basa en la fusión entre núcleos estables y no se formarían si se produjeran estas alteraciones en la física fundamental. La magnitud de la fuerza de la gravedad también desempeña un papel en la formación de las estrellas. La impresionante densidad de la materia en el núcleo central de una estrella potencia su horno nuclear y es la base de ese resplandor resultante, que es la luz estelar. Si la intensidad de la fuerza de la gravedad aumentara, la masa estelar se uniría con más fuerza, causando un incremento significativo en la velocidad. de las reacciones nucleares. Pero, del mismo modo que una bengala resplandeciente agota su combustible mucho más rápido que una vela que arde lentamente, un incremento en la velocidad de las reacciones nucleares haría que estrellas como el Sol se quemaran mucho más rápidamente, lo cual tendría, como ya sabemos, un efecto devastador en la formación de seres vivos. Por otra parte, si disminuyera significativamente la intensidad de la fuerza de la gravedad, la materia no se uniría formando bloques, con lo que se impediría la formación de estrellas y galaxias.
Podríamos seguir enumerando casos de este tipo, pero la idea ya ha quedado clara: el universo es como es porque las partículas de la materia y de las fuerzas tienen las propiedades que tienen. Ahora bien, ¿es esto una explicación científica de por qué tienen estas propiedades?

1 comentario:

  1. mira, en primer lugar tu blog ENCANDILA y MAREA!
    osea a quien se le ocurre poner negro y las letras blancas!!!!!!!!!!!! daaa?!!!!!!!!!!!

    y en segundo debes poner un buscador, ni vreas que voy a leer toso eso! que huevaaa¡¡¡!!!
    entonces recuerdalo y HAZLO!

    ah y tambien si eres maestro de alguna escuela no estoy en ella! eh!!!!!!!!!!!!!??????????

    adiosito!

    ResponderEliminar