8.- EL ESPACIO Y EL TIEMPO

En junio de 1905, Albert Einstein, a la edad de veintiséis años, presentó un artículo técnico a los Annals of Physics de Alemania en el que abordaba una paradoja relativa a la luz que ya le tenía preocupado diez años antes, cuando era sólo un adolescente. Después de leer la última página del manuscrito de Einstein, el editor de la revista, Max Planck, se dio cuenta de que el artículo subvertía el orden científico generalmente aceptado hasta entonces. Sin alardes ni fanfarrias, un empleado de patentes de Berna, Suiza, había dado un vuelco completo a las nociones tradicionales de espacio y tiempo, y las había sustituido por un nuevo concepto cuyas propiedades se oponen a todo aquello que nos resulta familiar a partir de la experiencia cotidiana.
La paradoja que había preocupado a Einstein durante una década era la siguiente. A mediados del siglo XIX, después de un estudio minucioso de la obra experimental del físico inglés Michael Faraday, el físico escocés James Clerk Maxwell logró unir la electricidad y el magnetismo en el marco del campo electromagnético. Si ha estado usted alguna vez en la cima de una montaña justo antes de desencadenarse una fuerte tormenta o se ha colocado cerca de un generador de Van de Graaf, tendrá una idea corporal de lo que es un campo electromagnético, porque lo habrá sentido. En el caso de que no tenga esta experiencia, sepa que es algo parecido a una marea de líneas de fuerza eléctricas y magnéticas que impregnan la región del espacio por la que atraviesan. Por ejemplo, cuando se diseminan limaduras de hierro en las proximidades de un imán, la pauta ordenada que forman sigue la traza de las líneas invisibles de la fuerza magnética. Cuando nos quitamos un jersey de lana en un día especialmente seco y oímos una crepitación, además de sentir quizá un golpe momentáneo, o dos, estamos siendo testigos de la evidencia de líneas eléctricas de fuerza generadas por cargas eléctricas que han sido recogidas por las fibras de nuestro jersey.
Además de reunir estos y todos los demás fenómenos eléctricos y magnéticos en un marcomatemático, la teoría de Maxwell muestra -y eso resultaba entonces bastante inesperado- que las perturbaciones electromagnéticas viajan a una velocidad fija e invariable, una velocidad que resulta ser igual que la velocidad de la luz. A partir de esto, Maxwell constató que la luz visible en sí misma no es sino un tipo particular de onda electromagnética, de la que actualmente se sabe que interacciona con sustancias químicas en la retina, dando lugar así a la sensación de ver. Además (y esto es crucial), la teoría de Maxwell también demostraba que todas las ondas electromagnéticas -entre ellas la luz visible- son la personificación del viajero peripatético. Nunca se detienen. Nunca reducen su velocidad. La luz siempre viaja a la velocidad de la luz.
Todo va bien hasta que nos preguntamos, como lo hizo Einstein cuando tenía dieciséis años, ¿qué sucede si vamos tras un rayo de luz moviéndonos a la velocidad de la luz? El razonamiento intuitivo, basado en las leyes del movimiento de Newton, nos dice que estaremos a la par de las ondas luminosas y entonces nos parecerán estacionarias; la luz se quedará quieta. Sin embargo, según la teoría de Maxwell, y todas las observaciones fiables, sencillamente no existe la luz quieta: nadie ha podido nunca sostener en la palma de su mano un trozo de luz. Aquí está el problema. Afortunadamente, Einstein no sabía que gran parte de los físicos más destacados del mundo estaban enfrentándose con esta cuestión (y estaban avanzando por un camino que en gran medida era equivocado) y reflexionaban largamente sobre la paradoja de Maxwell y Newton en la prístina intimidad de sus propios pensamientos.
Quizá resulte sorprendente que el objetivo esencial de la teoría especial de la relatividad es comprender de un modo preciso cómo se presenta el mundo ante los individuos, llamados a menudo ‘los observadores’, que se mueven desplazándose los unos respectivamente a los otros. Al principio puede parecer que esto es un ejercicio intelectual de mínima importancia. Es más bien lo contrario: en las manos de Einstein, con sus juegos de imaginar observadores que van detrás de rayos de luz, existen profundas implicaciones con el hecho de comprender de un modo total cómo se presentan las situaciones más cotidianas ante la percepción de individuos que realizan movimientos relativos.

No hay comentarios:

Publicar un comentario